Search results for "partial trace"
showing 6 items of 6 documents
Quantum entanglement of identical particles by standard information-theoretic notions
2016
Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. We introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory …
Effects of Indistinguishability in a System of Three Identical Qubits
2019
Quantum correlations of identical particles are important for quantum-enhanced technologies. The recently introduced non-standard approach to treat identical particles [G. Compagno et al., Phil. Trans. R. Soc. A 376, 20170317 (2018)] is here exploited to show the effect of particle indistinguishability on the characterization of entanglement of three identical qubits. We show that, by spatially localized measurements in separated regions, three independently-prepared separated qubits in a pure elementary state behave as distinguishable ones, as expected. On the other hand, delocalized measurements make it emerge a measurement-induced entanglement. We then find that three independently-prepa…
Numerical range and positive block matrices
2020
We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate, $$\begin{eqnarray}\text{diam}\,W\left(\left[\begin{array}{@{}cc@{}}A & X\\ X^{\ast } & B\end{array}\right]\right)-\text{diam}\,W\biggl(\frac{A+B}{2}\biggr)\geq 2d,\end{eqnarray}$$ between the diameters of the numerical ranges for the full matrix and its partial trace.
Purification of Lindblad dynamics, geometry of mixed states and geometric phases
2015
We propose a nonlinear Schr\"odinger equation in a Hilbert space enlarged with an ancilla such that the partial trace of its solution obeys to the Lindblad equation of an open quantum system. The dynamics involved by this nonlinear Schr\"odinger equation constitutes then a purification of the Lindbladian dynamics. This nonlinear equation is compared with other Schr\"odinger like equations appearing in the theory of open systems. We study the (non adiabatic) geometric phases involved by this purification and show that our theory unifies several definitions of geometric phases for open systems which have been previously proposed. We study the geometry involved by this purification and show th…
Dealing with indistinguishable particles and their entanglement
2018
Here we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) which never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated to the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude whose structure in terms of single-particle amplitudes we here derive by first principles. To characterise entanglement among the identical particles, this new method utilises the same notions, such as partial trace, adopted for nonidentical ones. We highlight the connection betwee…
Banach Partial *-Algebras and Quantum Models
2007
C*-algebras are, as known, the basic mathematical ingredient of the Haag- Kastler (Haag and Kastler 1964) algebraic approach to quantum systems, with infinitely many degrees of freedom. The usual procedure starts, in fact, with associating to each bounded region V of the configuration space of the system the C*-algebra AV of local observables in V. The uniform completion A of the algebra generated by the AV ’s is then considered as the C*-algebra of observables of the system